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INTRODUCTION

The elastic~plastic problems of thick-walled tubes subjected to mechani-
cal loadings have been solved by many investigators based on different theo-
ries or methods.l=% Very little work has been done on the elastoplastic solu-
tions for thick-walled tubes subjected to thermal loadinga.5‘7 Recently, a
new finite-difference approach was developed for solving the plane-strain
problems of elastic-plastic thick-walled tubes subjected to mechanical load-
1ugs3 or thermal loadings.7 The approach has been extended to solve the gen-
eralized plane-strain problem subjected to mechanical load:lngs.4

In the present report, the generalized plane-strain problems pf elastic-
plastic thick-~walled tubes subjected to mechanical as well as thermal loadings
are considered. The formulation includes internal pressure, external pres-
sure, axial force, steady or transient thermal loadings. The numerical result

is reported for a closed-end tube subjected to internal pressure and to tem—

perature gradient. The formulation {s based on the incremental finite-
difference method using von Mises' criterion, the Prandtl-Reuss flow theory
and the {sotropic hardening rule. All incremental quantities are determined
in the program and no iteration is needed. In order to improve the efficiency
of the program, a scaled loading approach has baen implementad. The numerical
;alult- have been compared with those of Bland3 and additional results due to

large temperature gradient are reported.

References are listed at the end of this report.
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BASIC EQUATIONS

Assuming small strain and no body forces in the axisymmetric state of
generalized plane strain, the radial and tangential stresses, oy and og, must
satisfy the equilibrium equation,

r(d0,/9r) = gg - op 3 (n
and the corresponding strains, €, and €g, are given in terms of the radial
displacement, u, by

€r = du/dr , €g = u/r . (2)
It follows that the strains must satisfy the equation of compatibility

r(3eg/3r) = €p - eg (3)
Whereas the differential equations (1), (2), and (3) hold throughout the tube
regardless of the material properties, the constitution equations assume

various forms according to the adopted form of yield function, hardening rule,

-total or incremental theory of plasticity. In the present report, the

material is assumed to be elastic-plastic, obeying the von Mises' yield
criterion, the Prandtl-Reuss flow theory and the isotropic hardening law. The
complete stresa-strain relations are:
beq' = A0y'/2G + (3/2)04'Ac/(oH") (4)
40 > 0 for {1 = r,0,2 .

Aeg = E-1(1-2v)Acy + AT (5)

where E, v, a are Young's modulus, Poisson's ratio, coefficient of thermal

expansion, respectively, AT is the temperature increment,

o 7




26 = E/(1+v) ,

€p = (eptegrez)/3 , €' = €4 - €y ,
Op = (ortogtoz)/3 , o1’ =04 = op ,

o = (1/VD[(0r=09)2 + (0p=02)% + (0g~0p)2]1/2 5 o (6)
and o5 1s the yleld stress in simple tension or compression. For a strain-
hardening material, H' is the slope of the effective stress/plastic strain
curve

o = H([deP) . n
For an ideally-plastic material (H' = 0), the quantity (3/2)do(oH') is
seplaced by di, a positive factor of proportionality. When o < o4 or do < 0,
the state of stress is elastic and the second term in equation (4) disappears.
Pollévins Yamada et al,8 equations (4) and (5) can be rewritten in an
incremental form
80y = dijdey - EadT/(1-2v) for 4,] = r,0,z

and

dg4/26 = v/(1-2v) + &5 - 04'0y'/S (8)
where

2 1
8= (1+ 3 H'/G)o2 , H'/E = w/(l=w) , (9)

WE is the liopc of the effective stress-strain curve, and §i; is the Kronecker
5.1:..

Consider an open-end or closed-end thick-walled tube of inner radius a
and external radius b. The tube is subjected to inner pressure p, external

pressure q, and force f, inner temperature T, and external temperature Ty.

The boundary conditions for the problem are




or(a,t) = -p , op(b,t) = =q ,
b
2n] rozdr = uma? p+ £
a

where u 18 0 for open—end tubes and 1 for closed-end tubes.
When the temperature T is not varying with respect to time, the steady
. state distribution is given by

T =T, + N log (r/a)
and

N = (Tp-T,)/log (b/a) (1D
The streas solution in the elastic range is well-known. The quantities p*,

q*, f*, Ta* or Tp* required to cause initial yilelding can be determined by

using the von Mises' yield criterion.

FINITE-DIFFERENCE FORMULATION
For loading beyond the elastic limit, an incremental approach of the

finite~difference formulation is used, The croas section of the tube is

Y W

é divided into n rings with rj;=a,r,...,rx=p, ...,rp+}=b, where p is the radius
of the elaatic-plastic interface. At the beginning of each increment of

loading, the distribution of temperature, displacements, strains, and stresses

r———— ¢ &

is assumed to be known and we want to determine Au, Aey, Acg, Acg, Aoy, Acp,

A, gy at all grid points for the applied incremental loading, Ap, Aq, Af, ATy (1

R -~

= 1 to ntl). Since the incremental stresses are related to the incremental

~

strains by the incremental form (Eq. (8)) and Au = rAeg, there exists only
three unknowns at each station that have to be determined for each increment

of loading. Accounting for the fact that the axial strain €3 1s independent

o-is

of r, the unknown variables in the present formulation are (Aeg)y, (Aep)y, for

. .
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1=1,2,...n,n+l, and Ac,.
The equation of equilibrium (1) and the equation of compatibility (3) are
valid for both the elastic and the plastic regions of a thick-walled tube.
The finite-difference formn of these two equations at i = ],.,..,n are given by
(ry41-2r1)(bop)g = (ri41-r1)(B0e)g + r1(A0p)14)
= (ri41=r1)(0g=0r)q - r1l(ord14)] = (ordy] (12)
for the aquation of equilibrium, and
(vi41-2r1)(8€g)1 = (ry41-r1)(Bep)y + r1(Aeg)iy]
= (ry4)-re)(ep-eg)y - ril(eeley) - (€p)4l (13)
for the equation of compatibility. With the aid of the 1ncrementalisttess-
strain relations (Eq. (8)), equation (12) can be rewritten as
[(ry41=2r1)(d12)1 + (-ri41+r1)(d22)1])(2ep)y
+ [(rg41=2r1)(dy )1 + (?r1+1+t1)(d21>1l(A=r)1
+ rq(d12)141(8€0) 141 + r1(d11)141(8ep)14]
+ [(rg4)-2r1)(d)3) 1 + (-ry4)+r1)(d23)4 + v1(d13)141] 8¢,
= (rip1-r4)(op-0p)y = ril(op)14] = (o)1l
+ r4 Ba(1-2v)~3(ATy4)-ATy) . . (14)

The boundary conditions for the problem are

Ao(a,t) = -Ap , Aop(b,t) = -Aq ,
n
)} [ry(Acg)y + ri41(A80z) 1411 (re41~1y) = uralap + Af (15)
i=1

where u is 0 for open~end tubes and 1 for closed-end tubes. Using the

incremental relations (Bq. (8)), we rewrite equation (15) as
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(d12)1(2eg)y + (d11)1(Beg)) + (d)3)1Aez = =Bp + Ea(1l-2v)~1AT);  (16)
(d12)n+1(8€0)nt1 + (1D a+1(Bep)ns] + (d13)nt+18ez = ~8q + Ea(1-v)" Aoy
(17)
and
n
I (ra4-r1) {rg[(da3)1C8eg) 1 + (d13)1(8er)q] + ri41[(d23) 141(4E0) 14]
i=]
n
+ (d13)141(8ep) 1411} + 1 (ri41-r1) [r1€d33)1 + v141(d33) 1411 8¢,
i=]
n
= ua2dp + Af/7 + ) (ri+}-r{)[r1{AT{ + r{4]ATy41]Ea/(1-2V) (18)
i=1
Now we can form a system of 2n+3 equations for solving 2n+3 unknowns, (Aegly,
(beg)y, at 1 = 1,2,...,n,n+l and Ae,, Equations (16), (17), and (18) are
taken as the first and last two equations, respectively, and the other 2n
equations are set up at { = 1,2,...,n using equations (13) and (14). The
final system is an unsymmetric matrix of arrow type with the nonzero terms

appearing in the last row and column and others clustered about the main

diagonal, two below and one above.

INCREMENTAL LOADING - FIXED VS. SCALED
When the total applied pressure p or temperature T{(i=1 to n+l) 1s given,

1t is natural to divide the loading path into m equal fixed increments such as

Ap = (p-p*)/m, ATy = (Ty-Ty*)/m. These fixed increments need not be equal for

all steps and any sequence of m increments can be supplied by the user. A

sequence of decreasing load-increments is a better choice than that of equal

increments.




In order to increase the efficiency of the program, an adaptive algorithm
based on a scaled incremental-loading approach8 has been implemented. In
each step, a dummy load-increment such as 8p is applied and the incremental
results 80y for 1 = r,8,z at all grids are determined. For all grid points at

which ¢ = ||o4|| < 9,, we compute the scaler @'s by the formula

1
*=3 (T + (T2 4+ 4] ]aoy||2(0,2-||og[|D)11/2} /| [aog||% (19)
where
Iw |Jogf|? + |oog]|? = ||og + 8og]|? (20)

and [|og]|2, |[aoy||?, [{og + 804[|? are computed by

1
[Hog][? = 5 [(or=08)" + (96=05)% + (9=0p)°] . 1)
Let X be the minimum of the &'s. Then A is the load-increment factor just

sufficient to yield one additional point. A sequence of A(1) can be

" determined for all gteps jJ = 1,2,...,m and the updated results are

p(1) = p(I=1) + A ap(d)
0;(1) = 0, (3-1) + A(Daoy(3) | etc. (22)

NUMERICAL RESULTS AND DISCUSSIONS
Consider a closed-end tube subjecred to internal pressure p, inner and

outer temperature T, and Tp. The numerical results were based on the

. following psrameters: b = 2", a = 1", n = 100, v = 0.3, E = 30x10® ps1, o, =

30x10% pst, w = 0, a = 7,75x10~% in/1n°F.

According to Bland,5 let us define

8 = EaN/[2(1-V)0y/Y3)




2.4

as a measure of the effect of the temperature differences in the stress

S A e

system. The mean temperature

3 ; 'b
Too= 2n-ad Tl Trdr
a

1s taken as zero in the calculation of u/r. Three values of the temperature
stress factor 8 are chosen: 0 = -1/2, 0, and 1/2, L.e., Tp~-Ta = -72.3°F, V7F,
and 72.3°F. The thermal stresses are in the elastic range. In the presence
of these temperature gradients, internal pressure p is applied incrementally
until the fully plastic state is reached. The internal pressure p and ins’.i-
displacement Uy are obtained as functions of elastic-plastic interface ¢ as
shown in Figure 1. The effect of temperature gradient on these relations is

clearly shown in the figure. In order to compare the results by Bland,? the

state of stress 1s evaluated at p/a = 1.73. The dimensionless stresses :

(0r+06,02) /0o 8re expressed as functions of r/a as shown in Figures 2 through
4 for three cases of 6 = 0, -1/2, 1/2, respectively,

After removing the temperature gradients and internal pressure, the
residual stresses were obtained for all three cases. The states of residual
stresses for the first two cases were still elastic but reverse ylelding
occurred when unloading the last case., Five scaled incremental-loading steps
and one applied incremental-loading step were needed to unload completely.
The residual stresses for the last case are shown in Figure 5., The results in
Figures 1 through 5 are roughly the same as those of Blandd except Oz

This difference 1s reasonable because Tresca's yield criterion is used in

reference 5.
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As a last example let us consider a closed-end tube subjected to inner

temperature Ty only. When the temperature gradient is of sufficient

magnitude, yielding will first expand from the inside. When T, is larger than

a certain limit (238.4°F), plastic zone will expand from both the inside and
outside surface toward the interior. The relation between the inside
temperature and elastic-plastic interface is shown in Figure 6. The stresses

in a closed-end tube subjected to temperature gradient (T, = 299°F, Tp = 0)

are ghown in Pigure 7, The doti.’ lines are elaatic~plastic interfaces.
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Figure 2. Stresses in a clesed-end tube subjected to
iaternal pressurve (p/z = 1.73; ¢ = 0),
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Pigure 3. 8tresses in a closed-end tube subjected to
internal pressure and temperature gradient
(p/a = 1,73; 8 = -1/2).
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